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Cascaded Amplifiers

Two-Stage Op Amp Design



Review of Basic Concepts

If
D(s)

N(s)
T(s) = is the transfer function of a linear system

T(s)
XIN XOUT

Roots of N(s) are termed the zeros

Roots of D(s) are termed the poles

Theorem:   A linear system is stable iff all poles lie in the open left half-plane

• If a circuit is unstable, the output will either diverge to infinity or oscillate 

     even if the input is set to 0

• A FB amplifier circuit that is not stable is not a useful “stand alone” FB amplifier

• A FB amplifier circuit that is “close” to becoming unstable is not a useful “stand 

alone” amplifier

• An amplifier circuit that exhibits excessive ringing or gain peaking is not a useful 

“stand alone” amplifier
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Routh-Hurwitz Stability Criteria:

A third-order polynomial s3+a2s
2+a1s+a0  has all poles in 

the LHP iff all coefficients are positive and  a1a2>a0

• Very useful in amplifier and filter design

• Can easily determine if poles in LHP without finding poles

• But tells little about how far in LHP poles may be

• RH exists for higher-order polynomials as well 

Review from Last Time



Cascaded Amplifier Issues

Three amplifier cascades  -  for ideally identical stages 3

0βA8 

Four or more amplifier cascades  -  problems even larger than for three stages 

--  seldom used in industry though some recent products use this method !

--  invariably modify A

--  seldom used in industry !
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For identical  first-order lowpass stage gains  

Consider now two amplifiers in cascade

Summary:
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Consider Again the Frequency Response of Feedback Amplifier 
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For two-stage cascade, i.e.  n=2 

Note this amplifier is stable !!!!

(at least based upon this analysis) 

If we assume 1212 pkp     express thus and  pp ~~~~ =

AFB(s) is a second-order lowpass function !
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Two-stage Cascade (continued)  
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Will be shown that maximally flat response for second-order all-pole amplifier  

occurs with θ=45o and maximally fast step response w/o ringing occurs with θ=90o
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k is the open-loop pole spread
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Review of Basic Concepts

Consider a second-order factor of a denominator polynomial, P(s), 

expressed in integer-monic form

                                 P(s)=s2+a1s+a0

Then P(s) can be expressed in several alternative but equivalent ways
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These are all 2-paramater characterizations of the second-order factor

and it is easy to map from any one characterization to any other

{ (a1,a2)  (ω0,Q)   (ω0,ζ)   (p1,p2)  (p1,k)   (α, β)  (r, θ) }

Widely used alternate parameter sets:
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Review of Basic Concepts
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1
sinθ

2Q
=

ωo = magnitude of pole

Q determines the angle of the pole
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Review from Last Time

Observe:     Q=0.5 corresponds to two identical real-axis poles

                    Q=.707 corresponds to poles making 45o angle with Im axis



Two-stage Cascade (continued)  
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Assume β is fixed
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Magnitude Response of 2nd-order all-pole (Low-pass) Function

From Laker-Sansen Textk

Maximally Flat Magnitude  

Response -no overshoot
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Step Response of 2nd-order all-pole (Low-pass)  Function

QMAX for no overshoot = 1/2 From Laker-Sansen Text

Maximally Fast Step 

Response -no ringing
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Two-stage Cascade second-order (continued)  
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Two-stage Cascade second-order (continued)  
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Typically design open loop amplifier so 
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So, what is the open-loop pole spread?
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Thus, it follows amplifiers are usually designed so that
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Magnitude Response of 2nd-order all-pole (Low-pass) Function

From Laker-Sansen Textk

Maximally Flat Magnitude  

Response -no overshoot
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For two-stage all-pole amplifiers, must have open-loop pole spread, k, 

very large to avoid overshoot in closed-loop gain
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Step Response of 2nd-order all-pole (Low-pass)  Function

QMAX for no overshoot = 1/2 From Laker-Sansen Text

Maximally Fast Step 

Response -no ringing

k < 4βA0

k > 4 βA0

k=4 βA0
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For two-stage amplifiers, must have open-loop pole spread, k, very large 

to avoid ringing in step response

1

2
Q


=

Review from Last Time



Im

45
o

Maximally fast time-domain 

response w/o ringing

Maximally Flat 

Magnitude Response

Re

Typical Preferred 

Pole Locations

Q=.707

Q=.5

Typical Target Closed-loop Pole Locations for 

Feedback Amplifiers

• For two-stage all-pole amplifiers, must have open-loop pole spread, k, 

very large to obtain desired performance of feedback amplifier

• Cascading of two identical amplifier stages to increase op amp gain not practical

• Two-stage amplifiers widely used to build op amps but must manage pole 

spreads (even if not all-pole)  - this will be discussed in detail when on the topic 

of compensation
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Pole Locations
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Determination of open-loop pole spread, k, for 

acceptable feedback performance



Two-stage Cascade second-order all pole
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Two-stage Cascade second-order all pole (continued)  
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Case 2:  Maximally flat all-pole FB magnitude response;  must make real and 

imaginary  parts equal 
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Determination of open-loop pole spread, k, 



Two-stage Cascade second-order all pole(continued)  
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The pole spread for maximal frequency domain flatness or fast non-ringing time 

domain step  response is quite large for the two-stage amplifier but can be 

achieved

Usually will make angle of feedback poles with imaginary axis between 45o and 

90o

This results in an open loop pole spread that satisfies the relationship

0TOT0TOT A2βkA4β 

“Compensation” can be viewed as  the modification of the pole locations of an 

amplifier to achieve a desired closed-loop pole angle or pole placement

“Compensation” should not be considered as a modification of the pole 

locations to achieve stability since an amplifier is of little use if stability 

concerns are present 

2 1p =kp

Determination of open-loop pole spread, k, 
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Pole Locus vs β for 2nd-order Amplifiers

β=0   :  open loop poles  p1,p2

Actual β   :  closed loop poles  p1f,p2f

• Feedback poles strongly dependent upon β

•  β large (i.e.  β= 1) often most challenging to deal with

Brief Summary of Operation of cascade of 2 single-pole amplifiers



Closed-loop pole Locus vs k for 2nd-order Amplifiers

β   fixed 

•  poles strongly dependent upon open-loop pole spread, k

•  k small often most challenging to deal with
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Brief Summary of Operation of cascade of 2 single-pole amplifiers



Pole Locus vs β for 2nd-order amplifiers for varying k

•  poles strongly dependent upon open-loop pole spread, k, and β

•  k small and β large are often most challenging to deal with
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Brief Summary of Operation of cascade of 2 single-pole amplifiers



Cascaded Amplifier Summary

Four or more amplifier cascades  -  problems even larger than for three stages 

--  seldom used in industry !

--  seldom used in industry !

Two amplifier cascades – for separated poles  
0TOT0TOT A2βkA4β 

--  widely used in industry but compensation is essential

--  spread dependent upon β and most stringent for large β

Three amplifier cascades  -  for ideally identical stages 3

0βA8 

Single-stage amplifiers   

--  widely used in industry, little or no concern about compensation

Note:  Some amplifiers that are termed single-stage amplifiers in many books and papers are 

actually two-stage amplifiers and some require modest compensation.  Some that are termed two-

stage amplifiers are actually three-stage amplifiers.  These invariable have a very small gain on the 

first stage and a very large bandwidth.  The nomenclature on this summary refers to the number of 

stages that have reasonably large gain.

Three amplifier cascades  -  for separated poles 

--  seldom used in industry but starting to appear but compensation essential!
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Summary of Observations about Cascaded Amplifiers

A cascade of amplifiers can result in a very high dc gain !

   

Characteristics of feedback amplifier (where the op amp is applied) are of 

ultimate concern

Some critical and fundamental issues came up with even the most basic 

cascades when  they are used in a feedback configuration

Must understand how open-loop and closed-loop amplifier performance 

relate before proceeding to design amplifiers by cascading



Summary of Amplifier Characteristics, Concerns, and Objectives

• An amplifier is stable iff all poles lie in the open LHP

• Routh-Hurwitz Criteria is often a practical way to determine if an 

amplifier is stable

• The cascade of three identical high-gain all-pole amplifiers will result in 

a pole-pair far in the right half plane when feedback is applied  so FB 

amplifier will be unstable
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• Although stability of an amplifier is critical, a good amplifier must not only 

be stable but generally must satisfy  magnitude peaking and/or settling 

requirements thus poles need to be moved a reasonable distance (in the 

angular sense) from the imaginary axis

• Designing an amplifier with concerns about stability will likely result in a 

poor amplifier design, design emphasis should be on more stringent 

requirements like magnitude peaking, settling, or other closed-loop metrics 

that are dictated by the intended application



• Fundamental Amplifier Design Issues

• Single-Stage Low Gain Op Amps

• Single-Stage High Gain Op  Amps

• Other Basic Gain Enhancement Approaches

– Cascaded Amplifiers

    (will return to this later)

• Two-Stage Op Amp

– Compensation 

– Breaking the Loop

• Other Issues in Amplifier Design

• Summary Remarks

Amplifier Design

Where we are at:



Basic Two-Stage Cascade
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• Simple Concept

• Several variants of basic cascade concept

• Must decide what to use for the two quarter circuits

Can be extended to fully differential on first and/or second stage



Basic Two-Stage Cascade
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• Widely used structure for single-ended output

• Quarter circuits often different between first stage and second stage



Basic Two-Stage Cascade
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• Widely used structure for differential outputs

• Quarter circuits often different between first stage and second stage



Basic Two-Stage Cascade

• Could be used but less popular
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Two-stage op amp design

It is essential to know where the poles of the op 

amp are located since there are some rather strict 

requirements about the relative location of the open-

loop poles when the op amp is used in a feedback 

configuration.



Parasitic Capacitances in MOS Devices

p-doping

n-doping

Depletion 

Region

CJUN

• Depletion region is formed between reverse-biased pn junctions

• Creates a capacitance CJUN

• Voltage, area, and doping level dependent

• Can be quite large for large junctions
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Parasitic Capacitances in MOS Devices
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Parasitic Capacitances in MOS Devices
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• Parasitic Capacitances added to Device Models

    CGS is often largest

• CBD and CBS often quite large with large 

drain/source area



Poles and Zeros of Amplifiers
VDD

M1 M2

VB2

M3 M4

VIN
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M8 M9

CL

M10

VOUT

C1

C2

C3 C4

C5

C6

C7 C8

• There are a large number of parasitic capacitors in an amplifier
(appprox 5 for each transistor)

• Many will appear in parallel but the number of equivalent capacitors can still be large

• Order of transfer function is equal to the number of non-degenerate energy storage   

   elements

• Obtaining the transfer function of a high-order network is a lot of work !

• Essentially every node in an amplifier has a capacitor to ground and these often

dominate the frequency response of the amplifier (but not always)

Cascaded Amplifier showing some of the capacitors



Pole approximation methods
1. Consider all shunt capacitors

2. Decompose these into two sets, those that create low frequency poles 

 and those that create high frequency poles (large capacitors create low

      frequency poles and small capacitors create high frequency poles)

       {CL1, … CLk}   and    {CH1, … CHm}

3. To find the k low frequency poles, replace all independent voltage sources with

 ss shorts and all independent current sources with ss opens, all high-frequency 

 capacitors  with   ss open circuits and, one at a time, select CLh and determine 

 the impedance  facing it, say RLh  if all other low-frequency capacitors are replaced 

 with ss short circuits.   Then an approximation for the pole corresponding to 

 CLh is

   pLh=-1/(RLhCLh)

4.   To find the m high-frequency poles, replace all independent voltage sources with

       ss shorts and all independent current sources with ss opens, replace all low-frequency 

       capacitors with ss short circuits and, one at a time, select CHh and determine the 

       impedance facing it, say RHh if all other high-frequency capacitors are replaced with ss

      open circuits.  Then the approximation for the pole corresponding to CHh is

   pHh=-1/(RHhCHh)



Pole approximation methods
These are just pole approximations but are often quite good

Provides closed-form analytical expressions for poles in terms of 

components of the network that can be managed during design

Provides considerable insight into what is affecting the frequency response

of the amplifier

Pole approximation methods give no information about zero locations

Many authors refer to the “pole on a node” and this notation comes from

the pole approximation method discussed on previous slide

Dominant low-frequency pole is largest of low-frequency poles and dominant 

high-frequency pole is smallest of high-frequency poles

Approach does a reasonable job of obtaining dominant low frequency poles 

(highest) and the dominant high frequency pole (lowest) if there is modest 

pole separation

Dominant low frequency and dominant high frequency poles are often most 

important



Example:  Obtain the approximations to the 

poles of the following circuit

R1=1K R2=5K

C1=100pF C2=200pF

VIN

VOUT

Since C1 and C2 and small, have two high-frequency poles

{C1, C2}



R1=1K R2=5K

C2=200pF

R1=1K R2=5K

C1=100pF C2=200pF

VIN

VOUT

R1=1K R2=5K

C1=100pF
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1
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C R +R

H1
1 1

1
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C  R

H2p  = - 833Krad/sec

H1p  = -10M rad/sec



R1=1K R2=5K

C1=100pF C2=200pF

VIN

VOUT

H2p  = - 821Krad/sec

H1p  = -12.2M rad/sec

In this case, an exact solution is possible
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(1.4% error)

(18% error)



• Fundamental Amplifier Design Issues

• Single-Stage Low Gain Op Amps

• Single-Stage High Gain Op  Amps

• Other Basic Gain Enhancement Approaches

– Cascaded Amplifiers

    (will return to this later)

• Two-Stage Op Amp

– Compensation 

– Breaking the Loop

• Other Issues in Amplifier Design

• Summary Remarks

Amplifier Design

Where we are at:



Compensation of Two-Stage Cascade

• “Compensation” is the modification of the op amp frequency response 

(that of the open-loop amplifier) so that acceptable ringing or overshoot 

or lack thereof in the closed-loop response is achieved

• Often do compensation for feedback amplifier applications though could 

compensate for closed-loop performance in other applications such as in a 

filter 

• If two stages in cascade are first-order lowpass, compensation strategy 

is often to make an adequate pole spread to get acceptable closed-loop 

performance

• Often focus on the poles on the two nodes if cascade is of first-order lowpass 

stages 

Note:   Have intentionally not mentioned the term “stability” when discussing 

compensation

• If large spread of two poles that may inherently be close is required, can 

make one much larger or make one much smaller but fundamental speed 

limitations in a process often make it impossible to make one pole much 

larger so only alternative is often to make one pole much smaller

Definition



Compensation Concepts
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may be possible 
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Will not provide 

compensation! 



Compensation of Basic Two-Stage Cascade
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•  Modest variants of the compensation principle are often used

•  Internal Node compensated creates the dominant pole on the internal node

•  Output compensated creates the dominant pole on the external node 

•  Output compensated often termed “self-compensated”

•  Internally Compensated denotes putting compensation circuit on-chip

F
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V
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F
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P
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V
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C
2

Internal Node Compensated Output Compensated

Everything else is just details !!

(shown for single input, single output but applicable to differential as well)
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Typical Target Closed-loop Pole Locations for Feedback Amplifiers

Common Compensation Goal



Compensation of Basic Two-Stage Cascade
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Question:   Would double compensation be even better?

F1

P1

 OUT
V

F2

P2
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V C1

C2

Double  Compensated

No! A second compensation capacitor would move the open-loop poles back together ! 



Two-stage Architectural Choices
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Stage 1
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Current 
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Ended Input

Tail Voltage Tail Current
Stage 2



Two-stage Architectural Choices

Output Compensated Internally Compensated

6

2

2

6

2

2

2

Plus n-channel or p-channel on each stage 4

2304 Choices !!!
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Two-stage Architectural Choices

Which of these 2304 choices can be used to build a good op amp?

All of them !!

Output Compensated Internally Compensated
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Stay Safe and Stay Healthy !



End of Lecture 13
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